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USAT-1 y su ADCS

� USAT-1: primer satélite

desarrollado en la UNLP [1].

� ADCS: controla la orientación

del satélite utilizando

giróscopos, magnetorquer,

CSS y magnetómetros [2].

� Magnetómetros:

� Principal: RM3100
magneto-inductivo, montado
en un módulo independiente.

� Secundario: MMC5983
magneto-resistivo, montado
dentro del módulo principal.
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Problema y ensayo de recolección de datos

Problema: Las mediciones de los magnetómetros están afectadas por:

� Sesgos estáticos en cada eje.

� Errores en los factores de escala y alineación.

� Perturbaciones generadas por la electrónica del satélite.

Ensayo de recolección de datos para calibración:

� Sensor montado sobre su placa de evaluación.

� Rotación controlada del magnetómetro alrededor de un punto

afectado por el campo magnético terrestre.

� Registro de muestras cada 10ms durante aproximadamente 10 s.
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Modelo de medición

Modelo general

h̃ = K · h + b

� h̃: vector de mediciones crudas.

� h: medición ideal.

� K: matriz de escala y alineación.

� b: vector de sesgo.
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Modelo de medición: efecto de K y b

Matriz de escala:

K =

1.0 0 0
0 1.0 0
0 0 1.0


Vector de sesgo:

b =

0.00.0
0.0


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Modelo calibrado

Modelo calibrado

h = Kc · h̃ + bc

� Kc: matriz de calibración (escala y alineación).

� bc: vector de calibración del sesgo.

Relación de transformación{
K = Kc

−1

b = −Kc
−1 · bc
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Esfera ideal

Campo magnético constante

hT · h = H 2
0

� H0: magnitud del campo magnético.

Reemplazando h por la expresión calibrada:(
Kc · h̃ + bc

)T
·
(

Kc · h̃ + bc

)
− H 2

0 = 0

Expandiendo en términos de h̃ = [x y z]T :
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Elipsoide simplificado: Modelo a ajustar.

Dado que el conjunto de datos se aproxima a una esfera, se descartan

los términos de rotación, obteniendo:

Modelo de elipsoide a ajustar

Ay2 + Bz2 + Fx + Gy + Hz + I = −x2
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Elipsoide simplificado: Del ajuste al modelo.

Modelo de elipsoide a ajustar

Ay2 + Bz2 + Fx + Gy + Hz + I = −x2

Este modelo, puede reescribirse de la siguiente manera:

h̃T · M · h̃ + N · h̃ + I = 0

Definiciones 
M =

1 0 0
0 A 0
0 0 B


N =

[
F G H

]
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Método empleado: Matriz de radios.

Siguiendo el método de [3], se construye la matriz de radio y se estima

la magnitúd del campo.

Matriz de radio

R =
√

(N · M−1 · NT − I ) · M−1
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Método empleado: Matriz de radios.

Siguiendo el método de [3], se construye la matriz de radio y se estima

la magnitúd del campo.

Matriz de radio

R =
√
(N · M−1 · NT − I ) · M−1 =

Rx 0 0
0 Ry 0
0 0 Rz



Magnitúd estimada

H0 =
Rx + Ry + Rz

3
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Método empleado: Matrices de calibración

Parámetros de calibración
Kc =

√
M · H0√

(N · M−1 · NT )− I

bc = Kc · M−1 · N
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Envolvente convexa

Definición simple

Dado un conjunto de puntos P = {pi} en R3, la envolvente convexa

conv(P) es elmenor conjunto convexo que contiene a todos los pi . De
forma intuitiva, es como una banda elástica estirada que encierra a todo

el conjunto de puntos.
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Distribución espacial de los puntos y su env. convexa

� La forma y el volumen de la envolvente convexa dependen de

cómo estén distribuidos los puntos en el espacio.

� Una buena cobertura genera un volumen cercano al ideal.
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Validación de calidad de los datos

� Se calculó el volumen de la envolvente convexa de las mediciones

calibradas h mediante el algoritmo Quickhull [4].

� Ese volumen se comparó con el de una esfera de radio H0.

Índice de cobertura

� Relación entre volumen medido y volumen ideal.

� A mayor similitud, mejor distribución de las muestras.
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Índice de cobertura
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Cobertura de las muestras

Cobertura del conjunto de muestras

tomadas con el magnetómetro

principal RM3100.

Cobertura del conjunto de muestras

tomadas tomadas con el

magnetómetro secundario MMC5983.
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Resultados: magnetómetro principal RM3100

Kc =


1.029 0 0

0 0.988 0

0 0 0.983



bc =


−0.824µT

−0.548µT

4.168µT



H0 = 22.195µT

Ignacio Brittez 22 / 26



Resultados: magnetómetro secundario MMC5983

Kc =


1.013 0 0

0 0.992 0

0 0 0.995



bc =


8.608µT

13.950µT

24.499µT



H0 = 25.291µT
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Conclusiones

� Mejores mediciones con el sensor principal.

� Bajo error por factor de escala.

� Error predominante en sesgos.

� Validación del calibrado mediante ensayo con jaula de Helmholtz.
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